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1 Introduction

Economists have long understood housing prices as a hedonic function of various amenities

o↵ered by a housing unit and its surroundings. These amenities take many forms, including

among them employment opportunities, neighborhood characteristics, cultural amenities,

local school quality, proximity to friends and family, idiosyncratic locational preferences,

and environmental amenities. Hedonic modeling allows us to infer the market valuation

of non-market goods like environmental amenities from market prices, yielding important

information about preferences and valuations that are di�cult to see directly from market

values.

In this paper, we explore the value that homeowners place on air quality by estimating

the causal e↵ect of declines in air quality due to wildfire increased smoke exposure. Wildfire

smoke contains a number of pollutants, most salient for health outcomes is PM 2.5 (EPA).

Chronic exposure to PM 2.5 can lead to significant declines in life expectancy, on the order

of -0.35 years for a 10 µg/m
3 reduction in particulate matter (Apte).

Under the logic of a hedonic model, homebuyers are sophisticated agents who take into

account these potentially significant e↵ects of air quality on life expectancy and health out-

comes among all other factors, suggesting a potentially large e↵ect of air quality on housing

prices. On the other hand, the consequences of living amid chronic air quality are temporally

delayed and di�cult to quantify, so homeowners may not be considering these e↵ects fully

when choosing housing. Moreover, the market for clean air may also su↵er from information

problems, since light pollution is not often visible directly to homeowners who do not seek

out AQI information directly.
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2 Relationship to the Literature

This paper attempts to contribute to the existing literature on estimating the causal e↵ect

of multi-year air quality shocks on housing prices, and explores the concept of thresholding

nonlinearities in preferences about housing prices. In particular, it may be that homeowners

do not respond to air quality inside a certain band of acceptability, but begin to respond

once the air quality moves outside that band.

A 2005 paper by Chay and Greenstone uses a spatial hedonic approach based on a United

States Clean Air Act policy which implemented stricter regulations on counties which failed

to meet pre-specified particulate pollution targets. They estimate that a 1% increase in

particulate matter pollution concentration decreases home values by approximately 0.2% to

0.35% (Chay and Greenstone, 2005). The fundamental idea of Chay and Greenstone’s study

is to use an instrument for air quality, namely non-attainment status under the Clean Air

Act, to get plausibly exogenous variation in air quality; my strategy is similar in that wildfire

smoke introduces plausibly exogenous variation in air quality that I will use in my estimation

strategy. My wildfire smoke instrument represents an improvement on the non-attainment

status instrument for a few reasons. Non-attainment status is a dummy, while wildfire smoke

is a continuously valued variable, which o↵ers more variability to exploit in estimation of

coe�cients. Furthermore, one must treat selection bias arguments very seriously in the

non-attainment case: perhaps there are systematic unobserved factors which simultaneously

a↵ect whether a county is a non-attainment county and which also a↵ect housing quality,

potentially introducing omitted variables bias. Wildfire smoke, treatment by which is largely

determined by wind patterns, admits fewer compelling arguments of this nature.

Kim et al. use a spatial hedonic approach at a very local level to estimate the e↵ects of

air pollution on housing prices in Seoul, South Korea, associating a 4% air quality increase

with a 1.4% housing price increase (Kim et al., 2003). They use a relatively small sample

of households with detailed housing price data across all of the major districts of Seoul,
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controlling for neighborhood income and housing characteristic factors, along with a spatially

interpolated local air pollution dataset. Their estimates use spatially lagged variables as

instruments, which is an econometric technique to overcome the lack of exogenous variation

present in the cross-sectional price data but which is subject to many technical challenges

(ibid). Zabel and Kiel employ a similar strategy in four U.S. cities, gathering data about

individual housing units’ prices and characteristics, controlling for neighborhood factors,

and estimating a hedonic model for housing prices in Chicago, Denver, Philadelphia, and

Washington D.C. They find a small, significant negative relationship between air pollution

and housing prices in two of them (Zabel and Kiel, 2000). Instead of relying on sophisticated

econometric techniques to overcome endogeneity in a cross-sectional sample as in both of

these papers, my paper uses plausibly exogenous variation in air quality measured over

multiple periods, which I believe is a stronger design. My design applies to a more general

setting than the estimates of these papers, which are city specific and may therefore lack

the external validity that estimates generated from county-level data from across the U.S.

would carry.

Borgschulte et al. use wildfire smoke to instrument for air quality in their 2018 working

paper estimating the causal e↵ect of air quality on the labor market, particularly on em-

ployment and adaptation costs. Although their outcome variable of interest is unrelated to

housing prices, the machinery of their research design, which they claim is novel in their

paper, is quite similar to the design I propose to use. They use daily air quality data from

the EPA, a wildfire smoke dataset based on satellite imagery to instrument for air quality,

and identify their observations at the county level (Borgschulte et al., 2018). Their paper is

focused on estimating the e↵ect of short term shocks of bad air quality on the labor mar-

ket, which is di↵erent from my medium to long-run focus on housing prices as e↵ected by

changing trends in wildfire smoke.

In summary, my paper can be understood as applying the research design using wildfire

data similar to that deployed by Borgschulte et al. to the domain of housing prices. Previous
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estimates of the causal e↵ect of air quality housing prices have often been local, identified

at the housing-unit level within a city or collection of cities, as in the cases of Kim et al.

and Zabel and Kiel. These estimates are clearly useful in the context of these cities, but

they are open to external validity and generalizability critiques that my paper attempts

to address by identifying observations across the United States at the county level. The

county-level identification of air quality and housing prices follows in the footsteps of Chay

and Greenstone.

3 Data

The data take the form of panel data, with monthly observations at the US county level of the

number of days in each month in which the county is covered by wildfire smoke plumes, the

mean air quality index (AQI) over the month, and the level of the Zillow housing price index

in that month. I also have associated to each observation a set of controls for unemployment

level and population density.

3.1 Wildfire Smoke

The wildfire smoke data used in this paper was produced from an incredibly detailed dataset

put together by Vargo in 2019, which included daily satellite observations of light, medium,

and heavy smoke plumes at the census block level (Vargo). In order to use this data, a few

important aggregation decisions were made:

1. The smoke exposure “dummy” at the county level on a given day is a population-

weighted continuous variable with values on [0, 1]. For example, suppose a county

contains ten census blocks, three of which contain 50% of the population of the county.

If these three blocks receive light smoke exposure on a given day, then the county level

smoke exposure for that day is 0.5, the population weighted dummy for exposure in

the county.
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2. In order to capture all of the smoke data in a single variable, we compute a weighted

sum of the light smoke, medium smoke, and heavy smoke exposure variables for each

day. The weights in the sum follow from the NOAA definitions of smoke plume inten-

sity, which tracks the density.1 Hence, the ”smoke score” for each day approximately

measures the total exposure to smoke in micrograms.

3. Finally, we aggregate to the monthly level by summing daily scores over the months

to obtain monthly estimates for smoke exposure.

The data exclude all counties in geographic west of the United States, as such counties

may su↵er from potentially significant confounding e↵ects because wildfire events are heavily

correlated with smoke events and may also a↵ect housing prices.

3.2 Zillow Home Value Index

The Zillow Home Value Index is a smoothed metric of housing prices which accounts. It can

be roughly interpreted as a smoothed dollar value for the 35th to 65th percentile of home

values in a county (Zillow).

3.3 Variable Descriptions

• pricec,t (numeric variable): The Zillow Home Value Index value, a smoothed indicator
of housing prices in county d and time period t.

• smokec,t (dummy variable): A time-dependent treatment variable determined from
the smoke score, which a weighted sum of the number of light, medium and heavy
smoke days over the month within each county. The dummy is one if we are in the
post treatment period (beginning 2015) and the county experiences a change in mean
monthly smoke score above a threshold value across the pre- and post-treatment period.

• Dc (dummy variable): A set of dummy variables for the county fixed e↵ects.

• Tt (dummy variable): A set of dummy variables for the time fixed e↵ects.

1In particular, ”Light” corresponds to 0�11 µg
m3 , ”Medium” to 12�22 µg

m3 , and ”Heavy” to 23+ µg
m3 . Weights

of 6, 17, and 25, respectively, were used.
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• Unempc,g(t) (numeric variable): The quarterly unemployment rate at the county level.
Here, g denotes the mapping of months to quarters.

• HCc,t (numeric variable): A set of controls for the characteristics of the average home
in a county

• Densityc: The 2020 county density – we assume that the density of counties are roughly
constant over this period.

4 Models

4.1 Modeling Assumptions

We argue that the wildfire smoke distribution is plausibly exogenous because it is governed

by large scale flows in the atmosphere as well as local weather variations. Because smoke

plumes travel thousands of miles from East to West across the U.S., smoke exposure outside

of the geographic West is generally unrelated to the factors which cause wildfires. This

produces a natural experiment setup in which some counties are treated with smoke while

others are not, with variation in treatment status that is as good as random.

In order to determine treatment status, we divide the period from 2010 to 2019 at a

threshold month and compare the average in the before period to the average in the after

period. Because there is no hard threshold for when we can think of treatment turning on,

we compare the coe�cients estimated across five potential cuto↵ dates: December 2013, May

2014, December 2014, May 2015, and December 2015. Although the graph does not show a

drastic increase in wildfire smoke in the second part of the decade, there is a very change in

the distribution of wildfire smoke across this period, with large swaths of the Eastern and

Northern U.S. receiving large percentage increases in wildfire smoke.

Below, we refer to the percentage change in mean smoke exposure between the interval of

June 2010 to the treatment threshold and the interval from the treatment threshold to June

2019 as a “medium run percentage change” in wildfire smoke exposure for linguistic

ease. All use of this terminology in the paper refers to this specific definition.
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4.2 Model Specifications

We model the e↵ect of wildfire smoke on housing prices in a number of forms, allowing us

to use di↵erent features of the variability in smoke exposure to estimate the causal e↵ect of

wildfire smoke under di↵erent modeling assumptions.

We first estimate an OLS model with a number of controls given by

ZHVIc,t = �OLS · smokec,t + � · unempc,t + densityc + Tt + ✏c,t,

running it both for ZHV Ic,t and log(ZHV I)c,t to look at level and percentage e↵ects. In

this context, we interpret �OLS as the e↵ect of a 1 µg
m3 increase in wildfire smoke exposure on

housing prices. This regression does not exploit the random variability in the distribution of

wildfire smoke, so it is not to be interpreted as a causal estimate, just as a correlation.

We next estimate a similar model, but instead of using the monthly smoke exposure, we

estimate the equation with the medium run percentage change in smoke percentage change.
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ZHVIc,t = �OLS ·�smoke(t
⇤
=60)

c,t + � · unempc,t + � · densityc + Tt + ✏c,t.

Estimating this equation also does not yield causal estimates, but it gives the correspond-

ing correlational estimate for the e↵ect of a change in the multiyear average.

Next, we run our main regression of interest, the treatment/control group regression

given by

ZHVIc,t = � · smoke treatment(t
⇤
=60)

c,t + � · unempc,t + � · densityc + Fc + Tt + ✏c,t.

The dummy smoke treatment(t
⇤
=60)

c,t turns on if t > 60, corresponding to the months following

January 2015 and later, and if county c is in the treatment group. To characterize treatment

status, we choose threshold values for the percentage change in smoke score across the

pre- and post-treatment periods. The threshold values we select are arbitrary, therefore

all results must be carefully analyzed for sensitivity and robustness (see below). For the

main regression, we characterize a county as ”treated positive” if the increase in the mean

smoke score from the pre- to post-treatment period is greater than 50%, as ”control” if the

magnitude of the change in means is less than 5%, as ”treated negative” if the decrease is

greater than 50% in magnitude, and as ”boundary” otherwise.

The final set of models which we estimate are those which have “buckets” for smoke

exposure corresponding to a percentage change of omitting the“boundary” counties:

ZHVIc,t =

 
X

b

�b · B(t⇤=60)

b

!
+ � · unempc,t + � · densityc + Fc + Tt + ✏c,t.

Here, we allow more flexibility by letting the di↵erence-in-di↵erences coe�cient depend on

the treatment level. Moreover, this specification allows us to look at potential threshold

values: we expect the coe�cient to be approximately zero near zero, and we can measure

thresholding behavior by examining how wide the band is wherein the coe�cients remain
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near zero.

5 Main Results

5.1 OLS Model

The base OLS regression results are in line with what we would expect from our priors.

We detect a somewhat sizable negative relationship, with increase of one microgram per

meter squared of exposure per month associated with a $138.91 decline in housing values as

measured by ZVHI, or alternatively, a 0.1% decline in housing prices.

The second set of OLS models has a coe�cient which can be interpreted as a 1% increase

in medium run percentage change in smoke exposure is associated with a $310.85 increase

in housing prices. This has a perverse sign to what we would expect when thinking about

air quality as a good people are willing to pay for. Exploring the figures used in the analysis

of the buckets models shows that the areas which received the largest increases in smoke

exposure, mainly the geographic northeast, also happen to be more expensive, so this e↵ect

is certainly not causal and can be easily explained by spurious correlation.

5.2 Treatment/Control Model

The treatment control model attempts to overcome the endogeneity by selecting a set of con-

trol counties (selected under the assumed good-as-random assignment of having an medium

run smoke exposure percentage change less than some threshold) and a set of treatment

counties (selected as higher than some threshold). Although the model was run with county

fixed e↵ects, it appears that spatial autocorrelation within the treatment and control groups

is responsible for the positive observed coe�cient. Examination of the map of treatment

and control groups supports this hypothesis. From the map below, we can see how despite

the randomized boundaries of the regions, they are largely connected and hence su↵er from

autocorrelation.
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Table 1: OLS Results

Dependent variable:

zhvi.score logZHVI zhvi.score logZHVI

(1) (2) (3) (4)

n.score �138.910⇤⇤⇤ �0.001⇤⇤⇤

(3.567) (0.00002)

m.s.pch60 31,084.830⇤⇤⇤ 0.209⇤⇤⇤

(351.238) (0.002)

unemp �12,133.240⇤⇤⇤ �0.094⇤⇤⇤ �12,155.620⇤⇤⇤ �0.095⇤⇤⇤

(76.539) (0.0005) (75.170) (0.0005)

density 37.048⇤⇤⇤ 0.0001⇤⇤⇤ 36.065⇤⇤⇤ 0.0001⇤⇤⇤

(0.166) (0.00000) (0.165) (0.00000)

Constant 236,814.200⇤⇤⇤ 12.497⇤⇤⇤ 228,138.400⇤⇤⇤ 12.443⇤⇤⇤

(1,637.335) (0.010) (1,604.653) (0.010)

Observations 247,825 247,825 247,825 247,825
R2 0.258 0.237 0.276 0.261

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table 2: Treatment/Control Results

Coe�cient Value Standard Error

(Intercept) 84997.9926 (1192.2196)
treat.k5.t25 7048.6579 (174.0785)
unemp 1507.4164 (40.8662)
(Intercept) 89832.5871 (1418.2894)
treat.k5.t50 4981.8987 (206.1134)
unemp 1042.3432 (58.7912)
(Intercept) 166978.0474 (1110.3854)
treat.k10.t25 6646.7527 (127.0532)
unemp 1410.9679 (35.5550)
(Intercept) 170480.2136 (1171.2642)
treat.k10.t50 4587.3365 (152.5765)
unemp 989.8005 (45.8351)
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5.3 Buckets Model

We estimate the di↵erence in di↵erences bucket model described in the model section above.

We choose two specifications which divide up the counties into buckets with 10% changes

(here referred to as the Twenty One Buckets model) and the 20% changes (here referred to

as the Twelve Buckets Model). For example, Bucket-3 in the Twenty One Buckets model

includes all counties in the eastern United States which experienced a medium run percentage

decrease in wildfire smoke of -30% to -40%. This gives us multiple treatment groups each

with a di↵erent treatment level. One observation is that certain buckets contain very few

counties, especially at the extremes, hence, inference from these groups is harder to justify.

The results of the regressions are recorded in the tables below. We can see that the

unemployment and density controls have the correct sign and similar magnitude to that in
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the OLS version. The coe�cients on the buckets are more di�cult to parse. In the model

we wrote down, these should represent the e↵ect of a medium run smoke change in the range

associated with each bucket on housing prices. If the model were correctly capturing the

causal e↵ect, we would expect to see the e↵ect be strongly positive for large decreases in the

smoke exposure, strongly negative for the large increases in smoke exposure, and closer to

zero as we approach zero from either end. This pattern is most definitely not observed, and

leads us to question the validity of the model.

Table 3: Twenty One Bucket Results

Coe�cient Value Standard Error

(Intercept) 229167.1007 (1593.4667)
bucket-7 7579.4415⇤⇤⇤ (2120.9187)
bucket-6 12452.7418⇤⇤⇤ (1322.5544)
bucket-5 -12753.8180⇤⇤⇤ (1197.0110)
bucket-4 -40523.6278⇤⇤⇤ (1145.9454)
bucket-3 -31501.3615⇤⇤⇤ (1119.2566)
bucket-2 -45392.7693⇤⇤⇤ (1152.7616)
bucket-1 -46298.2183⇤⇤⇤ (1116.4600)
bucket0 -49104.0762⇤⇤⇤ (1016.8342)
bucket1 -21775.0823⇤⇤⇤ (1050.0574)
bucket2 -998.0032 (991.8717)
bucket3 -4714.8775⇤⇤⇤ (1017.3990)
bucket4 -3.2480 (1087.7196)
bucket5 18657.1179⇤⇤⇤ (2951.1417)
bucket6 6160.8812⇤⇤⇤ (1303.4413)
bucket7 17543.1939⇤⇤⇤ (1382.0056)
bucket8 -7915.7779⇤⇤⇤ (1742.4632)
bucket9 -13751.0039⇤⇤⇤ (1784.5302)
bucket10 -26182.7457⇤⇤⇤ (3613.4257)
bucket11 NA NA
bucket12 41973.9373⇤⇤⇤ (3751.1691)
bucket13 43425.8995⇤⇤⇤ (6390.6147)
bucket14 NA NA
bucket15 27061.5994⇤⇤⇤ (8999.2158)
unemp -11785.0877⇤⇤⇤ (74.9822)
density 36.1491⇤⇤⇤ (0.1647)
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Table 4: Twelve Bucket Model

Coe�cient Value Standard Error

(Intercept) 230009.7616⇤⇤⇤ (1597.6566)
bbucket-4 -6109.1748⇤⇤ (2816.4182)
bbucket-3 -15963.0936⇤⇤⇤ (2170.0217)
bbucket-2 -49418.9504⇤⇤⇤ (2132.6985)
bbucket-1 -59533.4319⇤⇤⇤ (2137.8051)
bbucket0 -50296.4293⇤⇤⇤ (2113.8585)
bbucket1 -16378.6261⇤⇤⇤ (2107.8347)
bbucket2 -13641.8188⇤⇤⇤ (2128.6999)
bbucket3 -2330.2844 (2192.0692)
bbucket4 -24349.1420⇤⇤⇤ (2335.0775)
bbucket5 -11080.8776⇤⇤⇤ (2710.7456)
bbucket6 28559.8834⇤⇤⇤ (3801.7263)
bbucket7 13223.2686 (9228.9809)
unemp -11874.6629⇤⇤⇤ (75.0590)
density 36.0975 (0.1644)
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6 Robustness Checks

6.1 Parallel Trends

We plot the mean ZHVI across the Treatment/Control groups in each period and examine

the evolution in time. From the graph, it is visually clear that the trends in the means are

close to parallel, and it seems that there is a small dip in the ZHVI for the treatment group

after treatment.

For the buckets case, we plot the mean evolution in time within each bucket. As we

can see, the trends are not parallel in aggregate, although the majority of lines seems to

follow a parallel trends pattern. The outlier lines tend to be those with small sample sizes.

Because the parallel trends assumption fails in these circumstance, we can not make causal

inference on the basis of this model. The nonparallel trends may account to some extent for

the significant coe�cients which seem to show no clear pattern in the buckets model.
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6.2 Percent Change Threshold for Treatment/Control Model:

Because we are selecting which counties are in the treatment group by setting the the thresh-

old, it is crucial to analyze how sensitive the results are to our choice of threshold. In the

figure we graph the coe�cient output for t⇤ = 60 as a function of the selection threshold for

inclusion in the treatment group. We can see that as we contract the treatment group by

making the percentage change required more restrictive, the coe�cient drops down. This

makes some sense intuitively, for including only the counties which have the most extreme

change in smoke should increase the negative e↵ect. It is worth noting that even with a very

restrictive threshold, we still cannot overcome the spatial autocorrelation to get the negative

estimate we expect.

6.3 Treatment Start Time:

We run the OLS and Treatment-Control models at the five di↵erent treatment periods men-

tioned above and compare the results in the table below. We can see that the results are
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indeed sensitive to the choice of time period, which casts further doubt on the validity of

the model for causal inference.

Table 5: Treatment Start Time Sensitivities

Coe�cient Value Standard Error

(Intercept) 98895.6742⇤⇤⇤ (923.2356)
treat.k10.t50 -3507.9245⇤⇤⇤ (147.0831)
unemp 2191.4596⇤⇤⇤ (45.5383)
(Intercept) 92085.7062⇤⇤⇤ (1427.3480)
treat.k10.t50 1546.4467⇤⇤⇤ (176.6525 )
unemp 805.2211⇤⇤⇤ (56.6808)
(Intercept) 102848.6906⇤⇤⇤ (956.3864)
treat.k10.t50 -3673.3737⇤⇤⇤ (156.4296)
unemp 1592.4215⇤⇤⇤ (38.3191)
(Intercept) 170480.2136⇤⇤⇤ (1171.2642)
treat.k10.t50 4587.3365⇤⇤⇤ (152.5765)
unemp 989.8005⇤⇤⇤ (45.8351)
(Intercept) 160269.1325⇤⇤⇤ (1270.8943)
treat.k10.t50 -5971.5360⇤⇤⇤ (318.7610)
unemp 1860.2984⇤⇤⇤ (52.6187)

7 Conclusion

The geographic clustering of the treatment variable represents the most significant problem

with the validity of the model. Because smoke density is a roughly continuous variable,

the treatment status of a county strongly predicts the status of its neighbors. This spatial

autocorrelation is very challenging to deal with in this context and is likely responsible for the

failure to produce causal estimates in these models. Overall, I overestimated the extent to

which random variation in the smoke data would overcome the spatial correlation of housing

prices. The design may have worked better if the distribution of wildfire smoke were more

erratic and spotty, so that neighboring counties could be compared more directly.
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